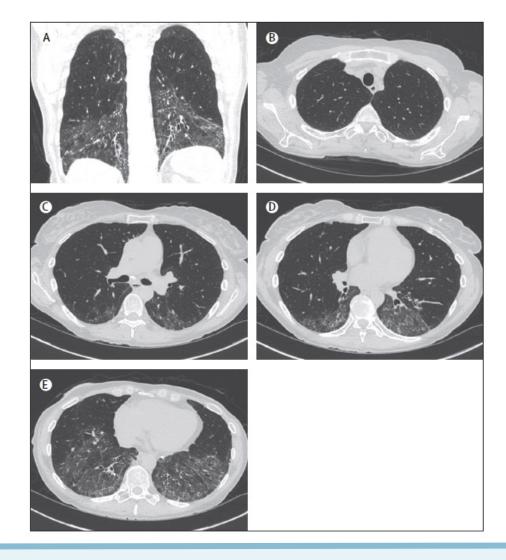


Scleroderma-associated ILD: Update on treatment approaches

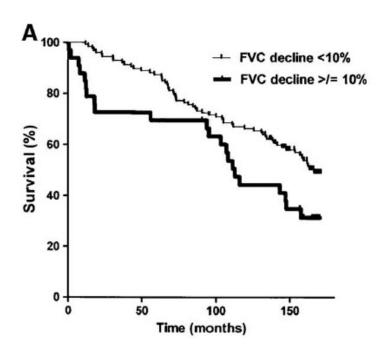
Robert Hallowell, MD May 15th, 2024

Disclosures


- Speaking and consulting fees: Boehringer Ingelheim, Genentech, Vicore
- Research trials: Boehringer, Genentech, Galapagos, Hoffmann-La Roche, Nitto Denko,
 Vicore
- Authorship fees: UpToDate, Dynamed

ILD is common in SSc

- Seen on CT in up to 80% patients
- Seen on autopsy in up to 90% of patients
- Clinically significant in 30-40% of patients
- 10-year mortality of SSc-ILD up to 40%



ILD is associated with death in SSc

- 162 patients with SSc-ILD
- 12-month PFT trends on 15-year survival
- HR 1.84, p = 0.01

- 5860 SSc patients in the EULAR trials and EUSTAR cohort
- Cause of death analyzed for 234/284 cases
- 33% of deaths attributed to a pulmonary cause; 19% pulmonary fibrosis


Table 1 Primary causes of death in 234 patients with SSc

	N	%
All death cases	234	100
SSc-related death cases	128	55
Pulmonary	78	33
Pulmonary fibrosis	45	19
Isolated PAH	33	14
Myocardial	33	14
Arrhythmia	14	6
Left heart failure	8	3
Right heart failure	5	2
Biventricular heart failure	4	2
Pericarditis (constriction and/or tamponade)	2	1
Renal	10	4
Renal crisis	10	4
Gastrointestinal	7	3

44 M with diffuse cutaneous SSc (+Scl-70, +SSA-52)

Risk factors for SSc-ILD progression

Panel 2: Risk factors for systemic sclerosis-associated interstitial lung disease progression

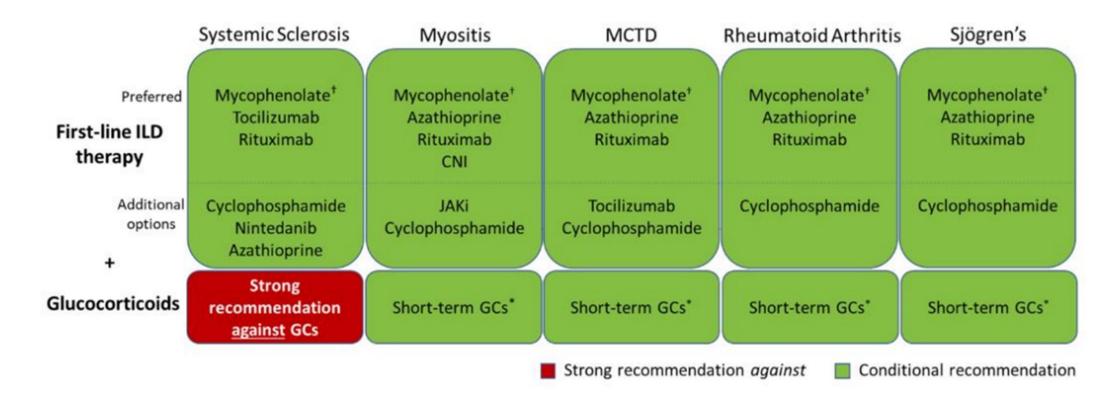
Epidemiology

- Male sex
- Active smoker
- Older age at presentation

Clinical features

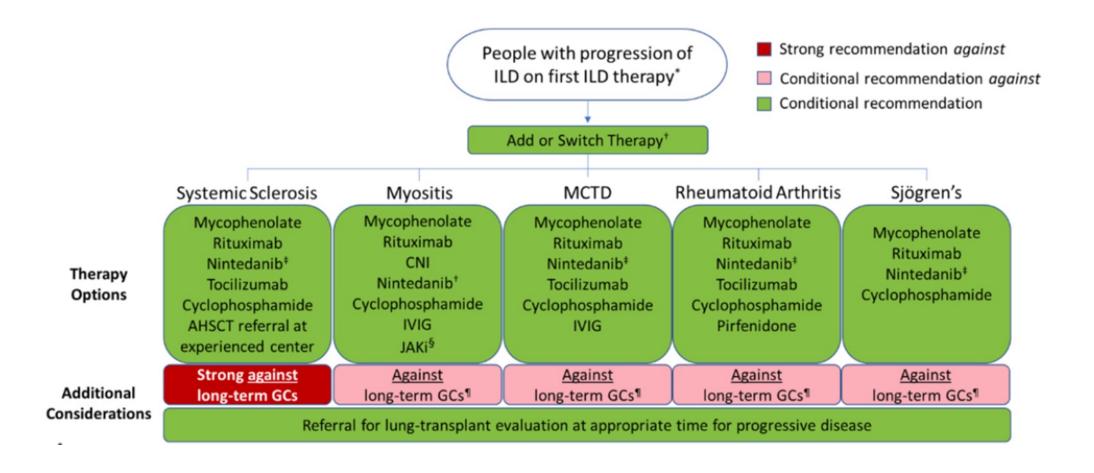
- Digital ulcers
- Arthritis
- Increased oesophageal diameter
- Pulmonary hypertension
- Progressive skin fibrosis
- Renal disease
- Myocardial fibrosis

Physiology and imaging

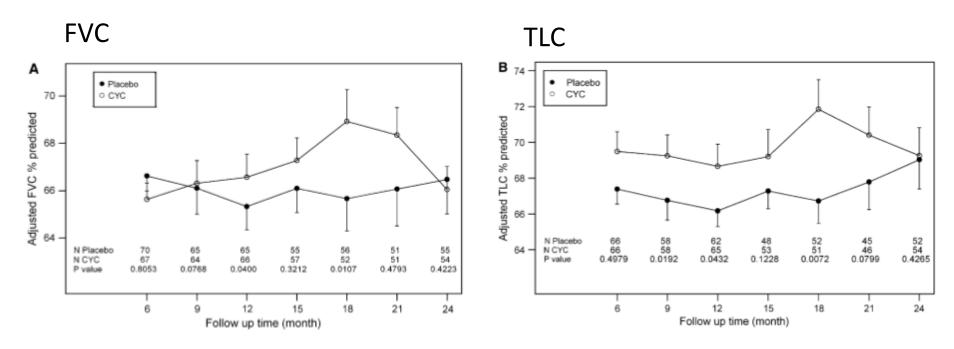

- Forced vital capacity (FVC) decrease of more than 10%
- More than 20% fibrosis on high-resolution CT
- Pulmonary artery-to-aorta ratio of more than 1:1
- FVC decrease of 5–9% with decrease in diffusing capacity for carbon monoxide of more than 15%
- Usual interstitial pneumonia pattern

Novel Biomarkers

- Fractional excretion of nitric oxide
- Interleukin 10
- Carbohydrate antigen 15-3
- C-reactive protein
- Monocyte chemoattractant protein 1

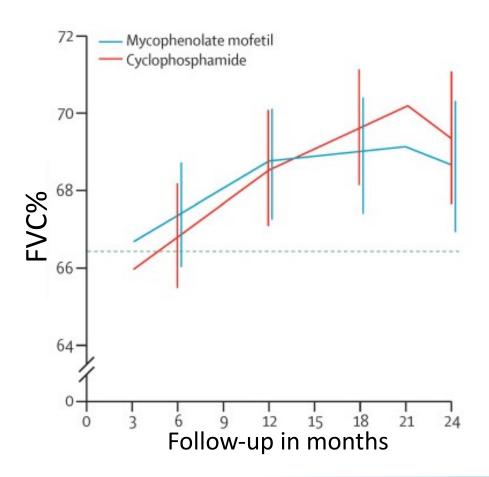


For people with SARD-ILD, we conditionally recommend against leflunomide, methotrexate,
 TNFi, and abatacept as first-line ILD treatment options.



Scleroderma Lung Study 1

158 patients with inflammatory SSc-ILD Randomized, double-blind, placebo-controlled trial Oral cyclophosphamide vs placebo for one year


CYC is better than placebo at 12 months, but the effects wane after 18 months Adverse events: hematuria, leukopenia, neutropenia

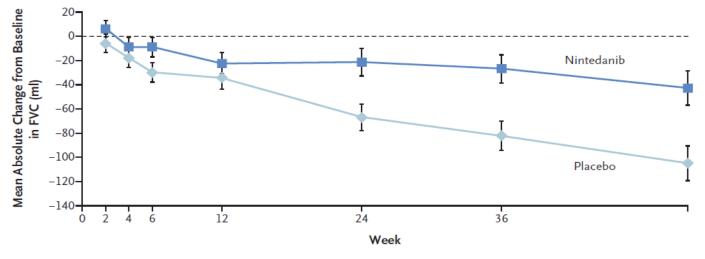
Scleroderma Lung Study 2

MMF (target dose 1500 mg twice daily) for 24 mo (63 pts)
Oral CYC (target dose 2.0 mg/kg/day) for 12 months, then placebo 12 mo (63 pts)

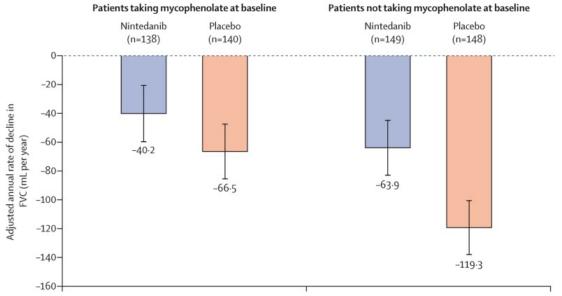
Also equal in both:

Skin score
Dyspnea
HRCT scores

More AE with CYC:


Leukopenia, anemia, thrombocytopenia.

More withdrew early from CYC or failed (34 vs 20)



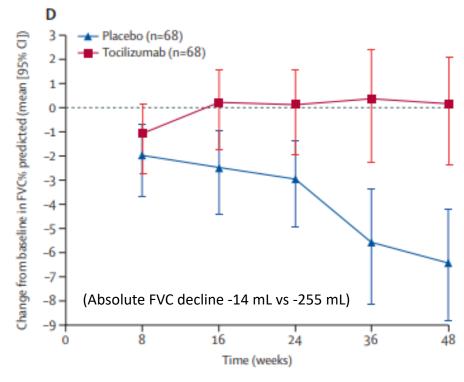
SENSCIS: Nintedanib for SSc-ILD

- 288 nintedanib; 288 placebo over 52 weeks
- 48.4% were receiving MMF at baseline

FocuSSced: Tocilizumab for SSc-ILD

Phase 3 study of diffuse cutaneous SSc

New active disease and elevated inflammatory markers


≈66% diagnosed with ILD at baseline

210 patients: Toci 162 sc weekly or placebo

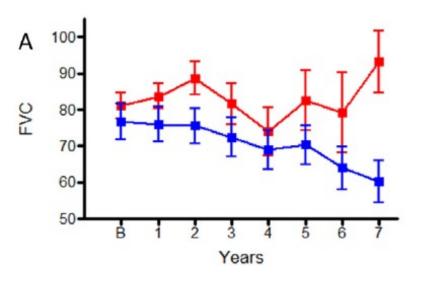
Primary endpoint (change in mRSS) not met

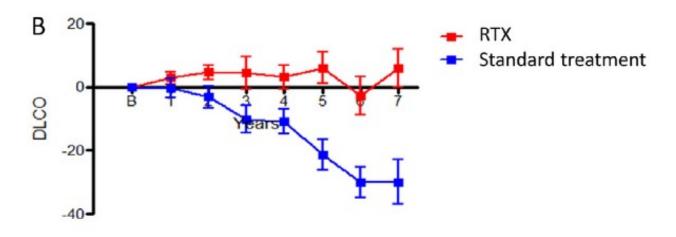
Absolute FVC decline of at least 10%:
Placebo 17%
Toci 5%

FVC Least Sq Mean change

Comparing the randomized SSc-ILD trials

Trial	Scleroderma Lung Study 2 (MMF vs CYC)	SENSCIS (Nintedanib vs Placebo)*	FocuSSced (Tocilizumab vs Placebo)
Mean age (yrs)	52.3	53-54	47-49
Median disease duration (yrs)	2.6	3.5	1.4-1.5
FVC % predicted	66.5%	72-73%	80-84%
DLCO % predicted	54%	53%	74-77%
Scl-70 positive	45.5%	60-62%	50%


*48.4% in SENSCIS were receiving MMF at baseline



Rituximab for SSc-ILD

51 patients with SSc-ILD
33 rituximab
18 conventional therapy (MMF 10, MTX 6, or AZA 2)
Followed a median of 4 years

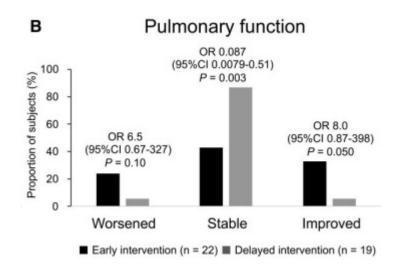
Rituximab for SSc-ILD

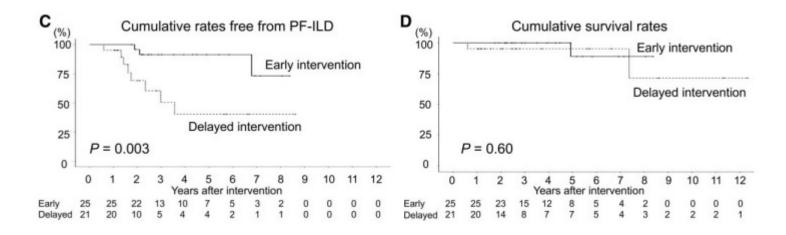
3 randomized controlled trials (90 patients)

7 non-randomized controlled trials (128 patients) were included

5 studies demonstrated statistically significant improvement in FVC at some time during follow-up

Meta-analysis of 3 RCT showed a positive effect of RTX on FVC in SSc-ILD


	Exp	erimen	tal	Control			Std. Mean Difference		Std. Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI				
Boonstra et al. (2017)	0.6	4.4	8	-0.4	2.3	8	18.8%	0.27 [-0.72, 1.26]					
Daoussis et al. (2010)	7.5	15.27	8	-4.33	15.63	6	15.0%	0.72 [-0.39, 1.82]			-		
Sircar et al. (2018)	6.22	9.86	30	-1.19	9.5	30	66.2%	0.76 [0.23, 1.28]					
Total (95% CI)			46			44	100.0%	0.66 [0.23, 1.09]			•		
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.74$, $df = 2$ (P = 0.69); $I^2 = 0$ % Test for overall effect: $Z = 3.02$ (P = 0.003)						-4	-2	0	2	4			
· · · ·								Favo	rs RTX				
g. 2 Effects of Rituxir	nab – L	.ung (F	VC) (R	CTs)									



Treating ScI-ILD earlier might be better

- Single-center, retrospective cohort study
- Patients received CYC, MMF, MTX or TOC within 6 years after disease onset.
- Patients divided into early (< 18 months, n=25) and delayed (> 18 months, n=21) intervention groups based on disease duration

Summary

• ILD is a common complication of SSc and associated with significant morbidity and mortality

• Early treatment of SSc-ILD is recommended, especially in high-risk patients

Treatment options include mycophenolate, tocilizumab, rituximab, and nintedanib

